Nervous System Report
The nervous system supports the transmission of messages around the mind and body, enabling an individual to respond to their environment. A neurotransmitter is a molecule that carries signals between neurons and across nerve junctions (synapses). Excitatory neurotransmitters increase the likelihood a neuron will fire a signal, while inhibitory neurotransmitters have the opposite effect. In order for us to interact effectively with our environment these must remain in balance.
Symptoms of neurotransmitter imbalance can include: mood imbalances, depression, mania, attention deficit and obsessive compulsive disorders, addictive behaviours, motor control disruption, anger, aggression and restlessness.
It analyses gene variants that impact serotonin (contentment) and melatonin (sleep), dopamine (motivation), noradrenaline and adrenaline (fight or flight); glutamate (the major excitatory neurotransmitter); GABA (the major inhibitory neurotransmitter) which is critical for relaxation; and endoCannabinoids (AEA/ anandamide) which regulate other neurotransmitters. The report provides detailed recommendations for nutritional support to alleviate symptoms and to optimise mental health.
The nervous system supports the transmission of messages around the mind and body, enabling an individual to respond to their environment. A neurotransmitter is a molecule that carries signals between neurons and across nerve junctions (synapses). Excitatory neurotransmitters increase the likelihood a neuron will fire a signal, while inhibitory neurotransmitters have the opposite effect. In order for us to interact effectively with our environment these must remain in balance.
Symptoms of neurotransmitter imbalance can include: mood imbalances, depression, mania, attention deficit and obsessive compulsive disorders, addictive behaviours, motor control disruption, anger, aggression and restlessness.
It analyses gene variants that impact serotonin (contentment) and melatonin (sleep), dopamine (motivation), noradrenaline and adrenaline (fight or flight); glutamate (the major excitatory neurotransmitter); GABA (the major inhibitory neurotransmitter) which is critical for relaxation; and endoCannabinoids (AEA/ anandamide) which regulate other neurotransmitters. The report provides detailed recommendations for nutritional support to alleviate symptoms and to optimise mental health.
The nervous system supports the transmission of messages around the mind and body, enabling an individual to respond to their environment. A neurotransmitter is a molecule that carries signals between neurons and across nerve junctions (synapses). Excitatory neurotransmitters increase the likelihood a neuron will fire a signal, while inhibitory neurotransmitters have the opposite effect. In order for us to interact effectively with our environment these must remain in balance.
Symptoms of neurotransmitter imbalance can include: mood imbalances, depression, mania, attention deficit and obsessive compulsive disorders, addictive behaviours, motor control disruption, anger, aggression and restlessness.
It analyses gene variants that impact serotonin (contentment) and melatonin (sleep), dopamine (motivation), noradrenaline and adrenaline (fight or flight); glutamate (the major excitatory neurotransmitter); GABA (the major inhibitory neurotransmitter) which is critical for relaxation; and endoCannabinoids (AEA/ anandamide) which regulate other neurotransmitters. The report provides detailed recommendations for nutritional support to alleviate symptoms and to optimise mental health.
Genes Included
Serotonin: ALDH2, HTR1A, HTR2A, MAOA, MTHFR, SLC18A1 (VMAT), VDR and TPH1 &2
Kynurenic Acid: FKBP5, IFNG and TNF
Melatonin: ASMT and MTNR1B
Dopamine: ALDH2, COMT, DRD2, MAOB, MAOA, MTHFR, OPRM1, SLC6A3 (DAT), TH and VDR
Adrenergic: ADRB2, COMT, DBH, MAOA, PNMT, SLC6A2 (NET) and SLC18A1 (VMAT)
GABA: ALPL, GAD1, GAD2 and GABRA2
Cannabinoid: CNR1, TRPV1 and FAAH
All of the Lifecode Gx reports include
personalised, colour coded genotype results
visual pathway presentation to enable interpretation of SNP results in context
gene function and SNP impact descriptions
clinically relevant SNPs
nutrient and other epigenetic impacts
links to research evidence